Computing the Integral Closure of an Affine Semigroup
نویسندگان
چکیده
منابع مشابه
The F-signature of an Affine Semigroup Ring
We prove that the F-signature of an affine semigroup ring of positive characteristic is always a rational number, and describe a method for computing this number. We use this method to determine the F-signature of Segre products of polynomial rings, and of Veronese subrings of polynomial rings. Our technique involves expressing the F-signature of an affine semigroup ring as the difference of th...
متن کاملRectangular Simplicial Semigroups
In [3] Bruns, Gubeladze, and Trung define the notion of polytopal semigroup ring as follows. Let P be a lattice polytope in R, i. e. a polytope whose vertices have integral coordinates, and K a field. Then one considers the embedding ι : R → R, ι(x) = (x, 1), and chooses SP to be the semigroup generated by the lattice points in ι(P ); the K-algebra K[SP ] is called a polytopal semigroup ring. S...
متن کاملNoetherian Properties of Rings of Differential Operators of Affine Semigroup Algebras
We consider the Noetherian properties of the ring of differential operators of an affine semigroup algebra. First we show that it is always right Noetherian. Next we give a condition, based on the data of the difference between the semigroup and its scored closure, for the ring of differential operators being anti-isomorphic to another ring of differential operators. Using this, we prove that t...
متن کاملSEMIGROUP C*-ALGEBRAS OF ax+ b-SEMIGROUPS
We study semigroup C*-algebras of ax + b-semigroups over integral domains. The goal is to generalize several results about C*-algebras of ax + bsemigroups over rings of algebraic integers. We prove results concerning K-theory and structural properties like the ideal structure or pure infiniteness. Our methods allow us to treat ax+b-semigroups over a large class of integral domains containing al...
متن کاملEfficient elliptic curve cryptosystems
Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004